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Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged
vibrational response of built-up structures at high audible frequencies. The procedure is
based on two developments; first, the derivation of the partial differential equations that
govern the propagation of energy-related quantities in simple structural elements such as
rods, beams, plates, and acoustic cavities; and second, the derivation of coupling
relationships in terms of energy-related quantities that describe the transfer of energy for
various joints (e.g., beam-to-beam, rod-to-beam, plate-to-plate, structure-to-acoustic field
coupling). In this investigation, the energy flow coupling relationships at these joints for
rods and beams are derived. EFA is used to predict the frequency-averaged vibrational
response of a frame structure with a three-dimensional joint, where four wave types
propagate in the structure. The predicted results of EFA are shown to be a good
approximation of the frequency-averaged ‘‘exact’’ energetics, which are computed from
classical displacement solutions.
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1. INTRODUCTION

There are currently no simple methods for predicting the vibrational and acoustical
response of built-up structures such as automobiles, aircrafts, and ships throughout the
entire audible frequency range. The finite element method (FEM) and the boundary
element method (BEM) are effective for the prediction of vibrational and acoustical
response of built-up structures at low frequencies. However, at high frequencies,
FEM/BEM are ineffective due to the requirement that the mesh size is small, which makes
model generation, turn-around time, and computational cost relatively high. Moreover,
studies [1, 2] have shown that the measured frequency response functions (FRF) of
air-borne and structure-borne transmission paths of nominally identical automotive
vehicles vary 5–10 dB above 200 Hz. Consequently, a deterministic prediction of
vibrational and acoustical response of built-up structures at high frequencies using FEM
or BEM will not be particularly useful.

At high frequencies, it would be useful for design purposes to know the space- and
frequency-average vibrational behavior of a structure. One approach to predict such
responses is energy flow analysis (EFA) [3–8]. The basic premise of EFA is that the state
of vibration can be essentially represented by stored, dissipated, and transferred farfield
energy densities. EFA is used to predict the space- and frequency-averaged vibrational
behavior of a structure in much the same manner as statistical energy analysis (SEA)
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[9–11]. However, the governing differential equations of EFA are derived using a
differential volume approach. Thus, the spatial variation of farfield energy density and
energy flow is predicted. The advantages of using a differential equation to describe the
state of farfield vibrational energy is that effects such as localized damping and power
inputs can be modelled in a straightforward fashion. The power transmission and reflection
coefficients (for structure to structure coupling) and radiation efficiencies (for structure to
acoustic space coupling) are used to couple simple structural and/or acoustical elements
together [12–16]. Hence, the power transmission and reflection coefficients and radiation
efficiencies of various types of coupled structures published in the literature can be readily
incorporated for use in EFA.

In this investigation, the vibrational response of a frame structure with a
three-dimensional joint is predicted using EFA. Due to the geometry of the joint,
vibrational energy conversions occur at the joint of the frame structure which causes
propagation of four types of vibrational energy transmission mechanisms within the
structure. EFA is used to predict all four types of energy transmission propagating in the
frame structure and to identify the dominant vibrational energy transmission mechanisms
in the frame structure.

2. THEORY

2.1.   

To develop the governing energy differential equation for one-dimensional structural
elements (i.e., rods and beams), first, an energy balance over a one-dimensional differential
element is performed. The time rate of change of energy per unit length in the
one-dimensional differential element must equal the difference in energy entering and
leaving the differential element minus the power dissipated due to damping within the
differential element. Hence, the resulting energy balance can be represented as [5, 6]

1e
1t

=−
1q
1x

− pdiss , (1)

where e is the energy per unit length, q is the power, and pdiss is the power dissipated due
to damping. For steady state conditions, the time rate of change of energy density is zero.

For a loss factor damping model, the time averaged power dissipated in the differential
element is proportional to the local energy per unit length [13],

�p�diss = hv�e�, (2)

where h is the structural loss factor and v is the circular frequency.
If the vibrational energy of a finite structure is segregated into positive and negative

traveling components, the power (or energy flow) and energy per unit length are related
by [13]

�q�+ = cg�e�+ and �q�− =−cg�e�−, (3, 4)

where cg is the group velocity of the type of wave propagating in the structure, and �e�+

and �e�− are positive and negative components of traveling energy per unit length. The
expressions of group velocities for flexural, longitudinal, and torsional waves are,
respectively,

cgfm =2$v2EIi

rS %
1/4

, cgl =XES
rS

, and cgt =XG
r

, (5–7)
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where the subscript, m, is the direction of transverse displacement (m= x, y or z), the
subscript, i, is the axis of area moment of inertia normal to the direction of the transverse
displacement (i= x, y or z), r is the material density, S is the cross-sectional area, Ii is
the area moment of inertia, E is Young’s modulus, and G is the shear modulus.

When equations (2)–(4) are substituted into equation (1), two first order energy
differential equations can be obtained,

d
dx

(cg�e�+)+ hv�e�+ =0 and −
d
dx

(cg�e�−)+ hv�e�− =0, (8, 9)

The general solution of equations (8) and (9) are

�e�+ =A exp0−hv

cg
x1 and �e�− =B exp0hv

cg
x1, (10, 11)

where the constants, A and B, are determined by energy per unit length or energy flow
boundary conditions. For finite structures, both positive and negative propagating waves
exist. Since the frequency-averaged vibrational response of finite structures approach those
of similar infinite structures, the general solutions (10) and (11) can be used to predict the
frequency-averaged energy per unit length and energy flow distributions in a finite
structure. The approximate energy per unit length distribution is the scalar sum of �e�+

and �e�−. The approximate net energy flow (or power) distribution is the vector sum of
�q�+ and �q�−.

2.2.       

Waves propagating in structures eventually encounter changes in material, geometry, or
structural configuration (i.e., a bend, a T-joint, or an L-joint). These discontinuities are
referred to as joints in this study. The coupling relationships are used to describe the energy
density and energy flow on either side of the joint.

The wave transmission approach is used extensively in the vibro-acoustic field to
estimate the power transmission and reflection coefficients (also, known as efficiencies) of
a joint [12–16]. In a finite structure, as in the coupled rods case shown in Figure 1, the
waves (which carry energy) incident upon the joint will produce partially reflected waves
in rod 1 and transmitted waves in rod 2. The transmitted waves will encounter the
boundary in rod 2 and will be reflected. The reflected waves in rod 2 will be re-incident
upon the joint, which will produce partially transmitted waves past the joint toward rod
1 and reflected waves in rod 2. The primary reflected waves in rod 1 will encounter the
boundary of rod 1 and will be reflected. The secondary reflected waves in rod 1 will be
re-incident upon the joint. This process will continue as long as the excitation source
continually injects power into the structure.

This process can be adequately described by the semi-infinite rod joint model shown in
Figure 2, where an incident wave from each rod simultaneously impinges upon the joint

Figure 1. Two coupled collinear rods.
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Figure 2. Longitudinal power transmission and reflection coefficients resulting from an incident longitudinal
wave in each rod; P�1l =incident longitudinal wave in rod 1, P�2l =incident longitudinal wave in rod 2,
rll11 = reflected longitudinal wave in rod 1, rll22 = reflected longitudinal wave in rod 2, tll21 = transmitted
longitudinal wave from rod 2 to rod 1, tll12 = transmitted longitudinal wave from rod 1 to rod 2.

from each direction. The left traveling wave incident upon the joint will be partially
reflected and partially transmitted. The right traveling wave incident upon the joint will
also be partially reflected and partially transmitted. Hence, the left traveling energy flow
in rod 1 can be represented as the sum of contributions from the partially reflected right
traveling wave in rod 1 and the partially transmitted left traveling wave of rod 2. The right
traveling energy flow in rod 2 can be represented as the sum of contributions from the
partially reflected left traveling wave in rod 2 and the partially transmitted traveling wave
of rod 1. The fraction of the incident wave which is transmitted and reflected past a joint
can be determined from wave transmission analysis. Hence, the net energy flow away from
the joint in each rod can be represented as

�q�−
2 = tll12�q�+

1 + rll22�q�+
2 , �q�−

1 = rll11�q�+
1 + tll21�q�+

2 (12, 13)

where tllij is the power transmission coefficient of longitudinal waves from rod i to rod j
(i, j=1, 2) and rllii is the power reflection coefficient for longitudinal waves in rod i. The
positive energy flow is considered as the energy flow incident upon the joint. The negative
energy flow is considered as the energy flow moving away from the joint. For
one-dimensional structures, tij = tji and rii = rjj . Hence, only one set of power transmission
and reflection coefficients needs to be computed. Since for conservative joints, the sum of
t12 and r12 is one, the addition of equations (12) and (13) yield the energy flow balance
relationship at the joint,

�q�+
1 − �q�−

1 − �q�+
2 + �q�−

2 =0. (14)

Equation (14) is a reiteration of conservation of energy flow across the joint. At the joint,
the difference of energy flow of positive and negative propagating waves in rod 1 is equal
to the difference in energy flow in rod 2. Hence, equations (12) and (13) are an alternative
representation of the principle of conservation of energy.

By using power transmission and reflection coefficients to model the energy flow across
the joint, a large amount of published literature on wave transmission analysis of various
types of coupled structures can be incorporated into EFA. Also, as power transmission
and reflection coefficients are used for structure-to-structure coupling, it is believed that
radiation efficiencies can be used for structure-to-acoustic space coupling.

For coupled structures of higher complexities, such as beams joined at arbitrary angles
and branched beam systems, the energy flow coupling relationships at the joint become
more complex. When two beams are joined at an arbitrary angle, both longitudinal and
flexural waves propagate in the structure due to the geometry of the joint. The net energy
flow in the receiving beam is a sum of contributions from the incident, transmitted, and
reflected flexural and longitudinal waves. In branched beam systems, the net energy flow
away from the joint must account for the contributions, not only from the propagation
of both the longitudinal and flexural waves in the structure, but also from the extra
branched beams in the structure. For the beam joint shown in Figure 3, two flexural waves,
one longitudinal wave, and one torsional wave propagate in the frame structure due to
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the geometry of the joint. Hence, the energy flow on either side of the joint must account
for the contributions from all four types of waves. The net flexural, longitudinal, and
torsional energy flow away from the joint in each beam section can be represented as

�q�−
3fz = tfzfz23�q�+

2fz + tfyfz23�q�+
2fy + tlfz23�q�+

2l + ttfz23�q�+
2t + tfxfz43�q�+

4fx + tfyfz43�q�+
4fy

+tlfz43�q�+
4l + ttfz43�q�+

4t + rfzfz33�q�+
3fz + rfxfz33�q�+

3fx + rlfz33�q�+
3l + rtfz33�q�+

3t ,

�q�−
3fx = tfzfx23�q�+

2fz + tfyfx23�q�+
2fy + tlfx23�q�+

2l + ttfx23�q�+
2t + tfxfx43�q�+

4fx

+ tfyfx43�q�+
4fy + tlfx43�q�+

4l + ttfx43�q�+
4t + rfzfx33�q�+

3fz

+ rfxfx33�q�+
3fx + rlfx33�q�+

3l + rtfx33�q�+
3t ,

�q�−
3l = tfzl23�q�+

2fz + tfyl23�q�+
2fy + tll23�q�+

2l + ttl23�q�+
2t + tfxl43�q�+

4fx + tfyl43�q�+
4fy

+tll43�q�+
4l + ttl43�q�+

4t + rfzl33�q�+
3fz + rfxl33�q�+

3fx + rll33�q�+
3l + rtl33�q�+

3t ,

�q�−
3t = tfzt23�q�+

2fz + tfyt23�q�+
2fy + tlt23�q�+

2l + ttt23�q�+
2t + tfxt43�q�+

4fx + tfyt43�q�+
4fy

+tlt43�q�+
4l + ttt43�q�+

4t + rfzt33�q�+
3fz + rfxt33�q�+

3fx + rlt33�q�+
3l + rtt33�q�+

3t ,

�q�−
2fz = rfzfz22�q�+

2fz + rfyfz22�q�+
2fy + rlfz22�q�+

2l + rtfz22�q�+
2t + tfxfz42�q�+

4fx + tfyfz42�q�+
4fy

+tlfz42�q�+
4l + ttfz42�q�+

4t + tfzfz32�q�+
3fz + tfxfz32�q�+

3fx + tlfz32�q�+
3l + ttfz32�q�+

3t ,

�q�−
2fy = rfzfy22�q�+

2fz + rfyfy22�q�+
2fy + rlfy22�q�+

2l + rtfy22�q�+
2t + tfxfy42�q�+

4fx

+ tfyfy42�q�+
4fy+lfy42�q�+

4l + ttfy42�q�+
4t + tfzfy32�q�+

3fz

+ tfxfy32�q�+
3fx + tlfy32�q�+

3l + ttfy32�q�+
3t ,

�q�−
2l = rfzl22�q�+

2fz + rfyl22�q�+
2fy + rll22�q�+

2l + rtl22�q�+
2t + tfxl42�q�+

4fx + tfyl42�q�+
4fy

+tll42�q�+
4l + ttl42�q�+

4t + tfzl32�q�+
3fz + tfxl32�q�+

3fx + tll32�q�+
3l + ttl32�q�+

3t ,

Figure 3. A frame structure with a three-dimensional joint.
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�q�−
2t = rfzt22�q�+

2fz + rfyt22�q�+
2fy + rlt22�q�+

2l + rtt22�q�+
2t + tfxt42�q�+

4fx + tfyt42�q�+
4fy

+tlt42�q�+
4l + ttt42�q�+

4t + tfzt32�q�+
3fz + tfxt32�q�+

3fx + tlt32�q�+
3l + ttt32�q�+

3t ,

�q�−
4fx = tfzfx24�q�+

2fz + tfyfx24�q�+
2fy + tlfx24�q�+

2l + ttfx24�q�+
2t + rfxfx44�q�+

4fx

+ rfyfx44�q�+
4fy+rlfx44�q�+

4l + rtfx44�q�+
4t + tfzfx34�q�+

3fz

+ tfxfx34�q�+
3fx + tlfx34�q�+

3l + ttfx34�q�+
3t ,

�q�−
4fy = tfzfy24�q�+

2fz + tfyfy24�q�+
2fy + tlfy24�q�+

2l + ttfy24�q�+
2t + rfxfy44�q�+

4fx

+ rfyfy44�q�+
4fy + rlfy44�q�+

4l + rtfy44�q�+
4t + tfzfy34�q�+

3fz

+ tfxfy34�q�+
3fx + tlfy34�q�+

3l + ttfy34�q�+
3t ,

�q�−
4l = tfzl24�q�+

2fz + tfyl24�q�+
2fy + tll24�q�+

2l + ttl24�q�+
2t + rfxl44�q�+

4fx + rfyl44�q�+
4fy

+rll44�q�+
4l + rtl44�q�+

4t + tfzl34�q�+
3fz + tfxl34�q�+

3fx + tll34�q�+
3l + ttl34�q�+

3t ,

and

�q�−
4t = tfzt24�q�+

2fz + tfyt24�q�+
2fy + tlt24�q�+

2l + ttt24�q�+
2t + rfxt44�q�+

4fx + rfyt44�q�+
4fy

+rlt44�q�+
4l + rtt44�q�+

4t + tfzt34�q�+
3fz + tfxt34�q�+

3fx + tlt34�q�+
3l + ttt34�q�+

3t ,

(15)

where tmnij is the wave type n power transmission coefficient in beam j due to the incident
wave type m in beam i (i, j=2, 3, 4; m, n=two flexural (fy , fz ; fx , fz ; fx , fy ), one
longitudinal (l), and one torsional (t)) and rmnii is the wave type n power reflection coefficient
due to the incident wave type m in beam i. For example, the flexural component in the
z-direction of the energy flow in beam section 3 in the positive direction, �q�−

3fz , is the sum
of the contributions from 12 incident waves. Generally, a three-dimensional n-branch
beam system uses 4n coupling relationships similar to equation (14) at the branched joint.

At the boundaries where there are no structural elements attached, there can be no
vibrational energy flowing out of the boundaries. All the vibrational energy incident upon
these boundaries will be reflected. Hence, the energy flow boundary condition,

�q�+
ni = �q�−

ni , (16)

is applied for all wave components of energy flow at these boundaries. Hence, there are
a total of 32 boundary conditions to be applied, which results in 32 simultaneous equations
for coefficients A and B in equations (10) and (11), respectively, for four wave types in
each of four beam sections.

3. ‘‘EXACT’’ ENERGETICS

The results predicted using EFA are verified using the frequency-averaged ‘‘exact’’
energetics of the frame structure. The ‘‘exact’’ energy density and energy flow expressions
were obtained from the displacement solutions of one-dimensional wave equations of the
various wave types.

The transverse displacement in beams can be represented as

wmi (xi )=Ami exp(−jkfmixi )+Bmi exp(−kfmixi )+Cmi exp(jkfmixi )+Dmi exp(kfmixi ), (17)

where the subscript m is the direction of transverse displacement (m= x, y or z), the
subscript i is the section of the beam structure (i=1, 2, 3 or 4), and kfmi is the complex
flexural wavenumber. On the right-hand side of equation (17), the first term,
Ami exp(−jkfmixi ), represents the forward propagating flexural wave, the second term,
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Figure 4. The sign conventions for positive torque, moments, shear, and axial forces.

Bmi exp(−kfmixi ), represents the forward decaying nearfield, the third term, Cmi exp(jkfmixi ),
represents the backward propagating flexural wave, and the fourth term, Dmi exp(kfmixi ),
represents the backward decaying nearfield.

The longitudinal displacement in beams can be represented as

ui (xi )=Pli exp(−jklixi )+Qli exp(jklixi ), (18)

where kli is the complex longitudinal wavenumber. On the right-hand side of equation (18),
the first term, Pli exp(−jklixi ), represents the forward propagating longitudinal wave and
the second term, Qli exp(jklixi ), represents the backward propagating longitudinal wave.

The torsional displacement in beams can be represented as

ui (xi )=Pti exp(−jktixi )+Qti exp(jktixi ), (19)

where kti is the complex torsional wavenumber. On the right-hand side of equation (19),
the first term, Pti exp(−jktixi ), represents the forward propagating torsional wave and the
second term, Qti exp(jktixi ), represents the backward propagating torsional wave. The sign
conventions used to derive the energy per unit length and energy flow expressions of
various wave types are shown in Figure 4. The solution is found by solving a set of 48
simultaneous equations for coefficients in equations (17) through (19) for four wave types
in each of four beam sections.

For harmonic excitation, the time-averaged energy per unit length and energy flow due
to the flexural waves in beams are

�e�f = 1
4EI6d2w

dx2

d2w*
dx2 7+ 1

4rS6dw
dt

dw*
dt 7 (20)

and

�q�f = 1
2EI Re 6d3w

dx3

dw*
dt

−
d2w
dx2

d2w*
dx dt7. (21)

The time-averaged energy per unit length and energy flow due to the longitudinal waves
in beams are

�e�l = 1
4ES6du

dx
du*
dx 7+ 1

4rS6du
dt

du*
dt 7 (22)
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and

�q�l = 1
2 Re 6−ES

du
dx

du*
dt 7. (23)

The time-averaged energy per unit length and energy flow due to the torsional waves in
beams are

�e�t = 1
4T6du

dx
du*
dx 7+ 1

4J6du

dt
du*
dt 7 (24)

and

�q�t = 1
2 Re 6−T

du

dx
du*
dt 7, (25)

where T is the torsional stiffness and J is the mass moment of inertia. The frequency
averaged ‘‘exact’’ energetics are obtained using the relationships

�ê�=
1

(v2 −v1) g
v2

v1

�e� dv, �q̂�=
1

(v2 −v1) g
v2

v1

�q� dv. (26, 27)

In this investigation, the difference in frequency, v2 −v1, will be a one-third octave band.

4. RESULTS

EFA is used here to predict the energetics of the frame structure shown in Figure 3. The
equivalent energy flow problem is shown in Figure 5. The EFA results are compared to

Figure 5. Equivalent energy problem.
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Figure 6. Comparison of the four components of the ‘‘exact’’ energy density frequency-averaged over the
2500 Hz one-third octave band and the energy density predicted by EFA at fc =2500 Hz in beam sections 1 and
2; ——, ‘‘exact’’ response; ----, EFA prediction.

the frequency-averaged ‘‘exact’’ energetics. All beams are made of aluminum
(E=7·1×1010 Pa and r=2700 kg/m3). The cross-sectional area and the area moment
of inertia are 4×10−4 m2 and 1·3333×10−8 m4, respectively, for all beams. The length of
all beams is 4 m. The structural loss factor for all beams is 0·04. The magnitude of the
applied point force in the incident beam is 10 N.

In Figures 6 and 7, the four components of the energy per unit length and energy flow
(magnitude) predicted by EFA at the center frequency of 2500 Hz in beam sections 1 and
2 are compared to the four components of the ‘‘exact’’ energy per unit length and energy
flow (magnitude) frequency averaged over the 2500 Hz one-third octave band. At the
center frequency of 2500 Hz, the one-third octave bandwidth is 580 Hz. In Figure 7, all

Figure 7. Comparison of the four components of the ‘‘exact’’ energy flow frequency-averaged over the 2500 Hz
one-third octave band and the energy flow predicted by EFA at fc =2500 Hz in beam sections 1 and 2; ——,
‘‘exact’’ response; ----, EFA prediction.
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Figure 8. Comparison of the four components of the ‘‘exact’’ energy density frequency-averaged over the
2500 Hz one-third octave band and the energy density predicted by EFA at fc =2500 Hz in beam section 3; ——,
‘‘exact’’ response; ----, EFA prediction.

four components of the energy are flowing in the negative direction except for the z
direction flexural energy flow, which is flowing in the positive direction from x=2–4 m.
In Figure 6, the sharp peak in the z direction flexural energy per unit length (efz ) and, in
Figure 7, the discontinuity of the z direction flexural energy flow (pfz ) at x=2 m are at
the location of the excitation source. The dominant energetics in the incident beam are
the z direction flexural energetics. The secondary energetics are longitudinal energetics
which are approximately 50 dB below the z direction flexural energetics. The torsional
energetics and the y direction flexural energetics are not coupled well to the excitation
source.

In Figures 8 and 9, the four components of the energy per unit length and energy flow
(magnitude) predicted by EFA at the center frequency of 2500 Hz in beam section 3 are

Figure 9. Comparison of the four components of the ‘‘exact’’ energy flow frequency-averaged over the 2500 Hz
one-third octave band and the energy flow predicted by EFA at fc =2500 Hz in beam section 3; ——, ‘‘exact’’
response; ----, EFA prediction.
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Figure 10. Comparison of the four components of the ‘‘exact’’ energy density frequency-averaged over the
2500 Hz one-third octave band and the energy density predicted by EFA at fc =2500 Hz in beam section 4; ——,
‘‘exact’’ response; ----, EFA prediction.

compared to the four components of the ‘‘exact’’ energy per unit length and energy flow
(magnitude) frequency averaged over the 2500 Hz one-third octave band. The dominant
energetics in beam section 3 are the torsional energetics. The secondary energetics are the
z direction flexural energetics which are approximately 10 dB below the torsional
energetics. In beam section 3, the x direction flexural energetics and the longitudinal
energetics do not couple well with the dominant energetics of the other beam sections.

In Figures 10 and 11, the four components of the energy per unit length and energy flow
(magnitude) predicted by EFA at the center frequency of 2500 Hz in beam section 4 are
compared to the four components of the ‘‘exact’’ energy per unit length and energy flow
(magnitude) frequency averaged over the 2500 Hz one-third octave band. The dominant
energetics in beam section 4 are the x direction flexural energetics. The secondary

Figure 11. Comparison of the four components of the ‘‘exact’’ energy flow frequency-averaged over the
2500 Hz one-third octave band and the energy flow predicted by EFA at fc =2500 Hz in beam section 4; ——,
‘‘exact’’ response; ----, EFA prediction.
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energetics are the longitudinal energetics, which are 10 dB below the x direction flexural
energetics. In beam section 4, the y direction flexural energetics and the torsional energetics
do not couple well with the dominant energetics of the other beam sections.

In Figures 6–11, the difference between the lowest and the highest of the four
components of the energetics of any beam section is typically 70 dB. Even with this large
variation, the essential behavior of the frame structure is well predicted by EFA. The
dominant energetics in each beam section are predicted within 0·5–2 dB. The secondary
energetics in each beam section, which are 10–50 dB below the dominant energetics, are
predicted within 3–5 dB. The dominant energetics of the frame structure is the z direction
flexural energetics in the incident beam. Other dominant energetics in other beam sections
are typically 30 dB below the z direction flexural energetics in the incident beam. EFA
shows that the three-dimensional joint is not an efficient transmitter of energy to other
beam sections in the frame structure in this frequency band.

Cho [17] shows an additional case study of the same frame structure for the 4000 Hz
one-third octave band where exact results are compared to EFA predictions. The results
improve compared to the results shown here for the 2500 Hz one-third octave band
because the reflection and transmission coefficients of semi-infinite systems are better
approximations of the reflection and transmission of finite systems at higher frequencies.

5. CONCLUSIONS

An EFA method is developed for predicting the frequency-averaged energy per unit
length and energy flow distributions in built-up structures. EFA is used to predict the
vibrational response of a frame structure with a three-dimensional joint. The predictions
made by EFA are a good frequency-averaged approximation of the ‘‘exact’’ energetics.
Also, the dominant energy transmission mechanisms in the frame structure were identified
using EFA. Work is currently underway for applying EFA to a real built-up structure with
complicated geometry and shape using an energy based finite element method (EFEM).
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